120 research outputs found

    Differential-Drive Mobile Robot Control Design based-on Linear Feedback Control Law

    Get PDF
    This paper deals with the problem of how to control differential driven mobile robot with simple control law. When mobile robot moves from one position to another to achieve a position destination,  it  always produce  some errors.  Therefore,  a  mobile robot  requires  a certain control law to drive the robot’s movement to the position destination with a smallest possible error. In this paper, in order to reduce position error, a linear feedback control is proposed with pole placement approach to regulate the polynoms desired. The presented work leads to an improved understanding of differential-drive mobile robot (DDMR)-based kinematics equation, which will assist to design of suitable controllers for DDMR movement . The result show by using the linier feedback control method with pole placement approach the position error is reduced and fast convergence is achieved

    Swarm Robots Communication-base Mobile Ad-Hoc Network (MANET)

    Get PDF
    This paper describes the swarm robots communication and control base Mobile ad-hoc network (MANET). MANET is a source of codes which migrate the network, collects and exchanges information of network nodes. In this work, the communication networks, which do not rely on fixed, preinstalled communication devices like base stations or predefine communication cells. Communications standards are considered in this work use the ad-hoc network such as Wireless LAN, X-Bee/Zig-Bee and Internet platform. All standards are integrated on swarm robots for real experiments. For finding the target, Particle swarm optimization (PSO) algorithm is proposed to control the real swarm robots communication in unknown experiment. As a results swarm robots-base MANET use PSO algorithm produce past response to find the target and swarm robots can move in the group without collision

    A New Classification Technique in Mobile Robot Navigation

    Get PDF
    This paper presents a novel pattern recognition algorithm that use weightless neural network (WNNs) technique.This technique plays a role of situation classifier to judge the situation around the mobile robot environment and makes control decision in mobile robot navigation. The WNNs technique is choosen due to significant advantages over conventional neural network, such as they can be easily implemented in hardware using standard RAM, faster in training phase and work with small resources. Using a simple classification algorithm, the similar data will be grouped with each other and it will be possible to attach similar data classes to specific local areas in the mobile robot environment. This strategy is demonstrated in simple mobile robot powered by low cost microcontrollers with 512 bytes of RAM and low cost sensors. Experimental result shows, when number of neuron increases the average environmental recognition ratehas risen from 87.6% to 98.5%.The WNNs technique allows the mobile robot to recognize many and different environmental patterns and avoid obstacles in real time. Moreover, by using proposed WNNstechnique mobile robot has successfully reached the goal in dynamic environment compare to fuzzy logic technique and logic function, capable of dealing with uncertainty in sensor reading, achieving good performance in performing control actions with 0.56% error rate in mobile robot speed

    Intelligent Robotics Navigation System: Problems, Methods, and Algorithm

    Get PDF
    This paper set out to supplement new studies with a brief and comprehensible review of the advanced development in the area of the navigation system, starting from a single robot, multi-robot, and swarm robots from a particular perspective by taking insights from these biological systems. The inspiration is taken from nature by observing the human and the social animal that is believed to be very beneficial for this purpose. The intelligent navigation system is developed based on an individual characteristic or a social animal biological structure. The discussion of this paper will focus on how simple agent’s structure utilizes flexible and potential outcomes in order to navigate in a productive and unorganized surrounding. The combination of the navigation system and biologically inspired approach has attracted considerable attention, which makes it an important research area in the intelligent robotic system. Overall, this paper explores the implementation, which is resulted from the simulation performed by the embodiment of robots operating in real environments

    Sertifikat Pembicara PKM

    Get PDF

    SK Mengajar Genap 2022/2023_Bambang tutuko

    Get PDF
    • …
    corecore